For example,Бобцов

Color triangle color separation system for colorimetric research in microscopy

Annotation

The paper presents studies of the color separation system based on the developed color triangle for conducting scientific research in microscopy which will allow identifying genetic or chemical deviations of the samples under study by an accurate change in color. The color triangle covers the entire visible range and is focused on the physiological RGB and XYZ colorimetric systems. Based on the method of converting color spaces, the addition curves of the developed systems were found. Based on the curves, sets of color separating light filters were selected to fit the shapes of these curves based on the selected monochrome camera. Three sets are presented. An analytical study of these sets was carried out and one optimal set was selected. An analytical study of this system is presented in the form of mathematical modeling with 14 control colors from the Munsell atlas. The selected set of the system was experimentally studied on the developed optoelectronic setup placed in a black box to exclude light and color flare. One important part of the setup is the reflective screen: the location follows the lighting/observation recommendations of the International Commission on Illumination for colorimetric measurement of samples. For an objective analysis of measurements, reference test objects were selected — standardized colored optical glasses. The study was based on the evaluation of glass groups: yellow, yellow-green, green, blue-green, since the work has expanded the color space in the direction of the selected colors to obtain color accuracy. Previously, the author, in an analytical study of modern color separation systems, obtained results where the best value was found with a wide color triangle of 0.009, the worst 0.04 — with a small one. Thus, it has been proven: the larger the coverage of the color triangle, the smaller the change in color. The obtained values of the developed KZS system are better than modern ones –0.0088 on average. During the mathematical modeling of the experiment, the change in color was obtained 0.016 on average, the practical result — 0.027 on average. The obtained parameters and characteristics will be taken into account when introducing the developed color separation system into a monochrome digital microscope to improve color rendering in microscopy.

Keywords

Articles in current issue